首页> 外文OA文献 >Automatic segmentation of the striatum and globus pallidus using MIST: Multimodal Image Segmentation Tool
【2h】

Automatic segmentation of the striatum and globus pallidus using MIST: Multimodal Image Segmentation Tool

机译:使用MIST:多峰图像分割工具自动分割纹状体和苍白球

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate segmentation of the subcortical structures is frequently required in neuroimaging studies. Most existing methods use only a T1-weighted MRI volume to segment all supported structures and usually rely on a database of training data. We propose a new method that can use multiple image modalities simultaneously and a single reference segmentation for initialisation, without the need for a manually labelled training set. The method models intensity profiles in multiple images around the boundaries of the structure after nonlinear registration. It is trained using a set of unlabelled training data, which may be the same images that are to be segmented, and it can automatically infer the location of the physical boundary using user-specified priors. We show that the method produces high-quality segmentations of the striatum, which is clearly visible on T1-weighted scans, and the globus pallidus, which has poor contrast on such scans. The method compares favourably to existing methods, showing greater overlap with manual segmentations and better consistency.
机译:在神经影像学研究中经常需要对皮层下结构进行准确的分割。大多数现有方法仅使用T1加权MRI体积来分割所有受支持的结构,并且通常依赖于训练数据的数据库。我们提出了一种新方法,可以同时使用多个图像模态和单个参考分割进行初始化,而无需手动标记训练集。该方法对非线性配准后围绕结构边界的多个图像中的强度分布进行建模。使用一组未标记的训练数据对它进行训练,这些数据可能与要分割的图像相同,并且可以使用用户指定的先验自动推断出物理边界的位置。我们表明该方法产生纹状体的高质量分割,在T1加权扫描中清晰可见,而苍白球在这种扫描中对比度较差。该方法与现有方法相比具有优势,显示出与手动分割的更大重叠和更好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号